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1. Objective 

The aim of the present study is to clarify the effect of the grain size and free-carbon content on 

the superplastic deformation in order to invent the high-performance nano-silicon carbide (SiC) 

ceramics and reveal the participation and morphology of dislocation activity in superplastic 

deformation of nano-SiC ceramics. 

2. Results 

2.1 Fabrication of Nanocrystalline SiC Ceramics 

Nanocrystalline  β-SiC powder with a mean particle size of 30 nm (Sumitomo-Osaka  Cement 

Co., Tokyo, Japan, T-1 grade) was sintered without a sintering additive using several methods.  

The powder contained 3.7 weight-percent free carbon and 0.6 weight-percent impurity oxygen, 

and the amount of other metallic impurities was less than 1 ppm.  Table 1 shows the 

characteristics of SiC sintered by various sintering methods.  Figures 1–4 show the 

microstructure of the sintered SiC.  The grain size decreased with decreasing sintering 

temperature.  The grain size of the sintered body using multianvil apparatus was smallest; 

however, its hardness was extremely low in spite of relatively high density.  The perfect bonding 

of SiC particles required a higher temperature than 1200 °C.  The sintered body via the ultra-high 

pressure hot isostatic pressure (HIP) exhibited the highest density and highest hardness and fine 

grain size of less than 100 nm.  The ultra-high pressure HIP was effective for fabricating high-

quality nanocrystalline SiC ceramics.  

Table 1.  Characteristics of sintered SiC by various sintering methods. 

Sintering Method 

Sintering Conditions 

Relative Density 

(%) 

Hv (1 kgf) 

(kgf/mm
2
) 

Temperature 

(Cº) 

Pressure 

(MPa) 

Standard HIP 2000 200 93.8 2000 

Sinter forging by SPS 1800 500 93.5 2080 

Ultra-high pressure HIP 1600 980 96.8 2270 

Multianvil apparatus 1200 3000 94.8 1130 
Note:  SPS = spark plasma sintering. 
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Figure 1.  Ultra-high pressure HIP; 1600 °C, 980 MPa. 

 

Figure 2.  Multianvil high-pressure apparatus; 1200 °C, 3 GPa. 
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Figure 3.  Standard HIP; 2000 °C, 200 MPa. 

 

Figure 4.  Sinter forging by SPS; 1800 °C, 500 MPa. 
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2.2 The Effect of the Grain Size on the Deformation at Elevated Temperature 

The no-additive SiC ceramics with different grain sizes of 130 and 370 nm were prepared by 

annealing after HIPing.  The strain rate ε˙0 at elevated temperature is expressed as a function of 

the applied stress σ and grain size d as 

 
0  =   exp  ,

n

p

Q
A

d kT




 
 

 
 (1) 

where n is the stress exponent, p is the grain size exponent, Q is the apparent activation energy 

for deformation, k is Boltzmann’s constant, T is the temperature, and A is a constant.  The stress 

exponent value was 2~3 and increased with decreasing strain rate.  Such transition of stress 

exponent has been reported in superplastic zirconia ceramics and explained by the threshold 

model and/or the interface-controlled diffusion creep model.  The origin of the transition of flow 

stress in SiC is currently unclear. 

The flow stresses of SiC with smaller grain sizes were lower than those with larger grain sizes at 

a strain rate region of >1 × 10
-5

 s
-1

 (figure 5).  On the other hand, at a strain rate region of <1 

×10
-5

 s
-1

, the flow stresses of SiC with smaller grain sizes were higher than those with larger 

grain sizes.  Generally, the flow stress increases with increasing grain size in the superplastic 

deformation region.  In this region, the deformation rate is controlled by diffusion.  A novel 

interpretation is required for the inverse grain-size dependence at a lower strain rate.  It is 

possible that dislocation gliding is a possible mechanism of this deformation behavior of SiC. 

 

Figure 5.  Relationship between stress and strain rate of SiC with different grain 

sizes.
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2.3 Participation and Morphology of Dislocation Activity in Deformation of Nano-SiC 

Ceramics 

Figure 6 indicates the relationship between grain size and calculated shear stress required for 

nucleation of dislocation in SiC.  Because the shear modulus of SiC is very high, the critical 

shear stress is extremely high.  This figure shows that a perfect dislocation was more easily 

nucleated than the partial dislocation in SiC with a larger grain size.  On the other hand, the 

partial dislocation was more easily nucleated than a perfect dislocation in SiC with a smaller 

grain size.  The critical grain size is ~400 nm.  In both types of dislocations, the critical shear 

stress decreased with increasing grain size.  The inverse grain-size dependence at the low stress 

region in figure 6 may relate to the dislocation activity as nucleation or gliding.  Of course, the 

dominant mechanism of the nano-SiC is grain-boundary sliding.  Moreover, the stress level to 

nucleate the dislocation was much higher than in the present experimental data.  Therefore, 

dislocation gliding itself did not contribute to the total strain.  It worked by accommodating 

stress concentration generated by the grain boundary sliding.  If the grain size of nano-SiC were  

130 nm, then the partial dislocation would be active. 

 

 

Figure 6.  Relationship between grain size and shear stress required for nucleation of 

dislocation. 

 

Figures 7–9 show transmission electron microscopy (TEM) micrographs of nano-SiC before and 

after deformation.  After large deformation, the boundaries of the individual grains were not well 

defined and looked blurred, as in figure 2.  The strain was stored in the grains.  After annealing at 

2100 °C, the stored strain seemed to disappear.  The dislocations were hard to observe in SiC 

with the small grains.  However, in SiC with the larger grains, they were often observed.  We 

suspected that the movement of partial dislocations was important in the nano-SiC.  Because the 

stacking fault energy of SiC was very low, it was reasonable for us to think that the partial 

dislocations moved through the nanograin, leaving the stacking faults.
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Figure 7.  TEM image before deformation. 

 

Figure 8.  TEM image of deformed SiC 

(1900 °C, 1 × 10
-4 

s
-1
, ε = 0.65).

 

  
d o   = 370 nm   

  

  
d 

o  = 130 nm   
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Figure 9.  TEM image of annealed SiC (2100 °C, 1 h) 

after deformation. 

2.4 The Effect of Carbon Content on the Deformation at Elevated Temperature 

Nanosilicon powder was added to the β-SiC powder in order to control the carbon content.  The 

mixed powder was sintered by hot-pressing to remove the impurity oxygen.  The sintering was 

conducted at 2000 °C and 200 MPa using a SiC mold and SiC punches.  The free carbon in SiC 

reacted with the impurity oxygen and added silicon as follows: 

 

 C(s) + SiO(g) → SiC(s) +CO(g). (2) 

 C(s) + Si(s) →SiC(s). (3) 

 

Figure 10 shows SEM micrographs of hot-pressed SiC.  The grain size of SiC decreased with 

increasing the carbon and silicon content.  This suggested that the excess carbon and silicon 

segregated at the grain boundary, decreasing the grain-boundary diffusivity.  Such an effect was 

contrary to boron and oxygen.  Table 2 shows the characteristics of hot-pressed SiC.  Figure 11 

illustrates the relationship between the amount of excess silicon and carbon and grain size.
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Figure 10.  SEM micrographs of hot-pressed SiC. 

Table 2.  Hot-pressed SiC characteristics. 

Designation Excess Element 

(mol%) 

Grain Size 

(nm) 

Relative Density 

(%) 

1.3C-SiC 1.3 (carbon) 350 95.5 

0.7C-SiC 0.7 (carbon) 400 95.2 

0.3C-SiC 0.3 (carbon) 760 98.9 

0.6Si-SiC 0.6 (silicon) 470 97.4 

2.0Si-SiC 2.0 (silicon) 400 98.1 

2.4Si-SiC 2.4 (silicon) 270 97.9 
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Figure 11.  Relationship between the amount of excess carbon and silicon 

and grain size. 

Figure 12 shows the relationship between the stress and strain rate in SiC with a different carbon 

and silicon content.  The stress increased with increasing carbon content in spite of the decrease 

in grain size.  The role of the excess carbon in SiC was quite the opposite of that of boron 

additive.  The stress exponent tended to increase at a higher stress region.  In this study, the 

effects of the excess carbon in pure SiC ceramics on the microstructure and deformation were 

revealed.  The change of the structure and composition at the grain boundary by segregation of 

carbon atoms was interesting and will be researched in the future. 

 

Figure 12.  Relationship between stress and strain rate.
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